
HIGH VOLTAGE ULTRA-FAST DIODE FOR VIDEO

MAJOR PRODUCT CHARACTERISTICS

I _{Fpeak}	4 A
V _{RRM}	600 V
t _{rr}	55 ns
V _F (max)	1.2 V

FEATURES AND BENEFITS

- TURBOSWITCH[™] OUTSTANDING BENEFITS.
- HIGH REVERSE VOLTAGE: 600 V
- LOW POWER LOSSES INDUCING LOW TEMPERATURE AND HIGH RELIABILITY.
- OPTIMIZED TRADE-OFF BETWEEN t_{rr} AND SOFTNESS FOR VIDEO HORIZONTAL DEFLECTION.

DESCRIPTION

High voltage ultra-fast diode especially designed for modulation and flyback rectification in standard and high resolution displays for TV's and monitors.

The device is packaged in a DO-201AD axial enveloppe.

ABSOLUTE RATINGS (limiting values)

Symbol	Paramete	VALUE	Unit
VRRM	Repetitive peak reverse voltage	600	V
I _F peak	Forward peak current (1)	4	А
I _{FRM}	Repetitive peak forward current	100	А
I _{FSM}	Surge non repetitive forward current	80	А
T _{stg}	Storage temperature range	- 40 to 150	°C
Tj	Maximum operating junction to	150	°C

⁽¹⁾ on infinite heatsink with 10mm lead length

August 1999 - Ed: 4A 1/4

MDV04-600

THERMAL RESISTANCES

Symbol	Parameter	Max.	Unit
R _{th(j-l)}	Junction to lead	20	°C/W
R _{th(j-a)}	Junction to ambient on printed circuit L lead = 10mm	75	°C/W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Con	Тур.	Max.	Unit	
I _R *	Reverse leakage current	V _R = 480V	Tj = 25°C Tj = 125°C		50 0.75	μA mA
V _F **	Forward voltage drop	I _F = 4 A	Tj = 25℃ Tj = 125℃		1.28 1.20	V V

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

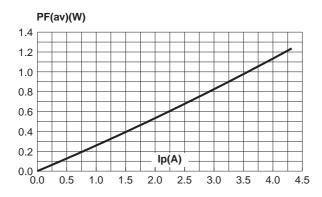
Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
t _{rr}	Reverse recovery time	$I_F = 0.5A$ $I_R = 1A$ Irr = 0.25A	55	75	ns
		$I_F = 100 \text{ mA}$ $I_R = 100 \text{ mA}$ $I_{rr} = 10 \text{mA}$	130		ns

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-ON SWITCHING

Sy	/mbol	Parameter	Test Conditions	Тур.	Max.	Unit
	t _{fr}	Forward recovery time	$I_F = 4 A$ $dI_F/dt = 100 A/\mu s$		0.5	μs
,	V _{FP}	Peak forward voltage	Measured at1.1 x V _F max. Tj = 25℃		15	V

To evaluate the maximum conduction losses use the following equation :


$$P = \frac{1.0 \ x \ l_p}{2} x \ \delta + \frac{0.050 \ x \ l_p^2}{3} \ x \ \delta$$

 $\boldsymbol{\delta}$: duty cycle Ip: Peak current

Ex : for $I_p = 4$ A and $\delta = 0.5$, P = 1.2 Watts.

Pulse test : * tp = 5 ms, δ < 2% ** tp = 380 μ s, δ < 2%

Fig. 1: Power dissipation versus peak forward current (triangular waveform, δ =0.5).

pad layout). K=[Zth(j-a)/Rth(j-a)]1E+0

Fig. 2: Relative variation of thermal impedance

junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm), recommended

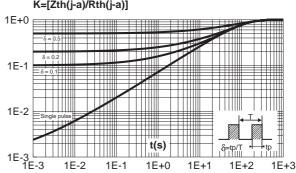
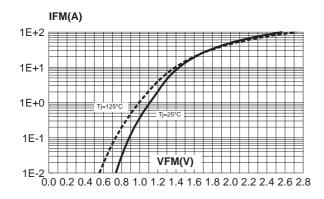



Fig. 3: Forward voltage drop versus forward current (maximum values).

Fig. 4: Reverse recovery time versus dIF/dt.

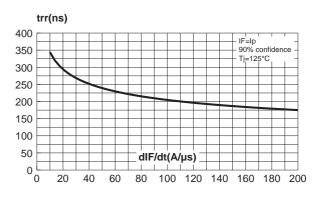
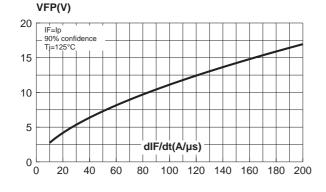
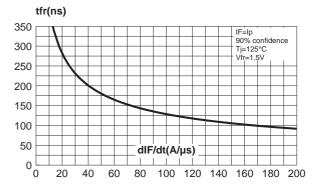
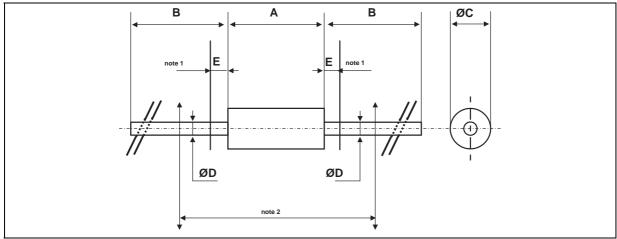




Fig. 5: Transient peak forward voltage versus dIF/dt.


Fig. 6: Forward recovery time versus dIF/dt.

PACKAGE MECHANICAL DATA

DO-201AD

	DIMENSIONS					
REF.	Millim	neters	Inches		NOTES	
	Min.	Max.	Min.	Max.		
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E	
В	25.40		1.000		2 - The minimum axial length within which the device may be	
ØC		5.30		0.209	placed with its leads bent at right angles is 0.59"(15 mm)	
ØD		1.30		0.051		
Е		1.25		0.049		

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
MDV04-600	MDV04-600	DO-201AD	1.166g.	600	Ammopack
MDV04-600RL	MDV04-600	DO-201AD	1.166g.	1900	Tape & reel

- Epoxy meets UL94,V0
- Polarity : Cathode indicated by polarity band

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com